
Large Deviations on One Dimensional

Hypergroups

Abstract

Let Sn be a random walk on a Sturm-Liouville hypergroup (R+, ∗), i.e. a
Markov chain on R+ with stationary transition kernel P (x;A) = δx ∗ µ(A)
where µ ∈ M1(K). The principle of large deviations is shown for the
distributions of Sn/n under the assumption that µ is compactly supported.

1 Introduction

The interest in random walks on one dimensional hypergroups originates in King-
man's [7] work on rotation invariant random vectors on Rn. More generally this
concept can be used to study isotropic random walks on algebraic structures such
as Riemannian symmetric spaces of noncompact type and rank one (see [1]). For
random walks on one dimensional hypergroups several probabilistic limit theo-
rems have been proven including laws of large numbers and central limit theorems
(see [1, 11, 12]).

We shall study here the large deviation principle associated with the law of
large numbers for these random walks that is the large deviation principle for the
distributions of Sn/n. This leads to an analogue of Cramér's theorem concerning
large deviations for sums of independent identical distributed random variables
(as given for instance in Section 3 of [9]).

For the convenience of the reader we start by recalling some basic facts con-
cerning random walks and moment functions on hypergroups and the abstract
large deviation principle. In section 3 the large deviation upper bound is proven
under a suitable condition on the law µ. The idea of the proof of the large de-
viation lower bound is to replace the exponential function by the multiplicative
functions of the hypergroup. We shall see in section 4 that this is indeed possible
whenever the law µ has bounded support.

Finally let us remark that corresponding results are also available for random
walks on polynomial hypergroups on N0 (see [3]). Furthermore large deviation
principles of three levels for random walks on the dual Jacobi and on the dual
disk hypergroup can be found in [6].
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2 Random walks on one dimensional hypergroups

2.1 A class of one dimensional hypergroups

Let R+ = [0,∞[ be a hypergroup; this means that there exists an associative
convolution (x, y) 7→ δx ∗ δy ∈ M1(R+) satisfying certain conditions such that
M(R+) is a Banach algebra with this convolution. For details and an exhaustive
list of examples we refer the interested reader to [1].
Now consider functions A : R+ → R with the properties

(A0) A ∈ C(R+), A(x) > 0 for x > 0, and A restricted to ]0,∞[ is continuously
di�erentiable.

(A1) One of the following two conditions is valid.

(A1a) A(0) = 0 and for all x in a neighborhood of 0

A′(x)

A(x)
=
α0

x
+ α1(x)

where α0 > 0 and α1 ∈ C∞(R) satis�es α1(−x) = −α1(x) for x ∈ R.
(A1b) A(0) > 0 and A ∈ C1(R+).

(A2) There exists a function β ∈ C1(R+) with β(0) > 0 and A′(x)
A(x)
− β(x) >

0. Furthermore the functions A′(x)
A(x)

− β(x) and q := 1
2
β′ − 1

4
βA

′(x)
A(x)

β are

decreasing on ]0,∞[.

A hypergroup (R+, ∗) is called Sturm-Liouville hypergroup (associated with A),
if there is a function A on R+ satisfying (A0) such that for every real valued
function f on R+, which is the restriction of an even C∞-function on R, the
function uf : R2

+ → R de�ned by uf (x, y) :=
∫
f(z)δx ∗ δy(z) belongs to C(R2

+)
and is a solution of the partial di�erential equation

uxx +
A′(x)

A(x)
ux = uyy +

A′(y)

A(y)
uy

and
uy(x, 0) = 0 for x ∈]0,∞[.

Theorem 3.11 in [11] shows that to every function A with the properties (A0)�
(A2) there exists a Sturm-Liouville hypergroup associated with A. Note that all
known examples of hypergroups on R+ fall within this framework.
In the sequel we assume without mention that every hypergroup (R+, ∗) is a
Sturm-Liouville hypergroup associated with a function A with the properties
(A0)�(A2).
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A function ϕ : R+ → C is called multiplicative if
∫
ϕ(z)d(δx ∗ δy)(z) =

ϕ(x)ϕ(y) for all x, y ∈ R+. The multiplicative functions of Sturm-Liouville hy-
pergroups are the solutions ϕλ of the Sturm-Liouville di�erential equation

ϕ′′λ +
A′(x)

A(x)
ϕ′λ + (λ+ ρ)ϕλ = 0(2.1)

ϕλ(0) = 1 and ϕ′λ(0) = 0 (λ ∈ C)(2.2)

where

(2.3) ρ := lim
x→∞

A′(x)

2A(x)
.

The existence of ρ is proven in [11].
Example:
Let α > −1/2 and Aα(x) = x2α+1. The Sturm-Liouville hypergroup associated
with Aα(x) is called Bessel hypergroup to the parameter α. Its multiplicative
functions are given by ϕλ(x) = Λα(λx) where Λα is the Bessel function to the
parameter α normed by Λα(0) = 1.

2.2 Random walks

Let (K, ∗) be a hypergroup and let B(K) be its Borel σ-algebra. Any Markov
chain Sn with state space K and stationary transition kernel is called random
walk with law µ if S0 = 0 and its transition kernel is homogeneous with respect
to the convolution of the hypergroup in the following sense:

(2.4) P (x;A) := δx ∗ µ(A) (x ∈ K;A ∈ B(K))

with a probability measure µ on K.
For general properties of such random walks we refer to [1]. It is immediate
from the de�nition that the distribution of the variables Sn is given by the n-fold
convolution product µ(n).

2.3 The modi�ed moments

For n > 0, λ ∈ C and x ∈ R+ de�ne functions φn,λ(x) and mn(x) by

(2.5) φn,λ(x) :=

(
∂

∂s

)n
ϕ(λ+s)(x)|s=0 and mn(x) = φn,iρ(x).

It can be shown that mn(x) > 0 for all n > 1. For µ ∈ M1(R+) the modi�ed
expectation is de�ned as

(2.6) E∗(µ) :=

∫ ∞
0

m1(x)dµ(x).

The modi�ed expectation plays an important role in the laws of large numbers
for random walks on R+ (see [1, 11]). It will also occur in our large deviation
result below.
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2.4 The abstract large deviation principle

Consider a sequence Fn of probability measures on a polish space E converging
weakly to a degenerate distribution at some point x0 ∈ E (in our main result
(Theorem 4.3) Fn will be the distribution of Sn/n and E the interval [0,∞[).
The abstract de�nition of the large deviation principle is (see [2, 4] or [9]):

De�nition 1. Let {Fn}n∈N be a sequence of probability measures on a polish
space E and {an}n∈N a divergent sequence of positive numbers. We say that {Fn}
satis�es the large deviation principle with constants {an}n∈N and rate function
I : E → [ 0, ∞ ], if the following conditions hold:

(i) I is lower semicontinuous and has compact level sets, i.e. for each m > 0
{x | I(x) 6 m} is compact.

(ii) For each closed subset A of E

lim sup
n→∞

1

an
logFn(A) 6 − inf

x∈A
I(x).

This is called the large deviation upper bound.

(iii) For each open subset G of E

lim inf
n→∞

1

an
logFn(G) > − inf

x∈G
I(x).

This is called the large deviation lower bound.

Here and in the following log denotes the natural logarithm.

To prove these large deviation bounds we apply the following theorem due to
Ellis (Theorem II.6.1 in [4]).

Theorem 1 (Ellis). Let Wn be an arbitrary sequence of random variables with
values in R and {an}n∈N a divergent sequence of positive numbers. De�ne for
t ∈ R

cn(t) :=
1

an
logE(exp(tWn)),

where E denotes the usual expectation of a random variable.
Assume that

(a) Each cn(t) is �nite for every t ∈ R.

(b) c(t) := limn→∞ cn(t) exists and is �nite for every t ∈ R.

Let Fn be the distribution of Wn/an. Then the following conclusions hold.

(i) The function I(x) = supt∈R{tx−c(t)} is convex, lower semicontinuous, and
nonnegative. I(x) has compact level sets.
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(ii) The large deviation upper bound is valid with constants {an}n∈N and rate
function I(x).

(iii) Assume in addition that c(t) is continuously di�erentiable for all t ∈ R.
Then the large deviation lower bound is valid with constants {an}n∈N and
rate function I(x).

3 The large deviation upper bound

Let (R+, ∗) be a Sturm-Liouville hypergroup as above. For µ ∈ M1(R+) its
(usual) moment generating function fµ(t) is de�ned by

(3.1) fµ(t) =

∫ ∞
0

etx dµ(x).

Theorem 2. Let (R+, ∗) be as above and let µ ∈M1(R+) be a probability measure
with fµ(t) :=

∫∞
0
etxdµ(x) <∞ for t > 0.

Denote the random walk with law µ by Sn and let cn(t) = 1
n

logE(exp(tSn)).
Then

(i) cn(t) exists for all t ∈ R and is �nite. Furthermore c(t) := limn→∞ cn(t)
exists for all t ∈ R and is �nite.

(ii) The large deviation upper bound is valid for the distributions of Sn/n, i.e.
for every closed set A ⊆ R

lim sup
n→∞

1

n
logP (Sn/n ∈ A) 6 − inf

x∈A
I(x)

where

I(x)

{
+∞ x < 0

supt∈R{tx− c(t)} x > 0

Proof. We have for m,n ∈ N

(3.2)

∫ ∞
0

etx dµ(n+m)(x) =

∫ ∞
0

∫ ∞
0

exp(t(x ∗ y)) dµ(m)(x)dµ(n)(y),

where exp(t(x ∗ y)) :=
∫
etz d(δx ∗ δy)(z).

It is shown in [11] Proposition 3.9 that for all x, y ∈ R+

(3.3) Tr δx ∗ δy ⊆ [|x− y|, x+ y]

and consequently

exp(t(x ∗ y)) 6 exp(t(x+ y)) t > 0,(3.4)

exp(t(x ∗ y)) > exp(t(x+ y)) t 6 0.(3.5)
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