
Local limit theorems for Markov chains

associated with disk polynomials

Abstract

We prove local limit theorems for Markov chains on N2
0 associated with

the disk polynomials of index α > 0. This means that we study the rate of

convergence of their transition probabilities. Our results complement the

known central limit theorem for these Markov chains.

1 Introduction

The so called disk polynomials form a family of orthogonal polynomials in two
variables on the unit disk. We use these polynomials to de�ne a class of Markov
chains with state space N2

0 which include as a special case isotropic random walks
on the dual of the Gelfand pair (U(d), U(d − 1)). These Markov chains have
been studied by Bouhaik and Gallardo in an number of papers. In particular
they established laws of large numbers and central limit theorems, see [2]�[4].
It is the purpose of this paper to supplement the central limit theorem with
the corresponding local limit theorems. This yields information on the order of
convergence of the transition probabilities. The proof uses the Hilb formula for
the disk polynomials and an integral representation of the transition probabilities.
This method of proof follows the pattern of the proof of the classical local limit
theorems to be found e.g. in chapter 4 of [8]. Finally let us mention that the
same method has also successfully been applied to Markov chains associated with
certain one dimensional orthogonal polynomials including the Jacobi polynomials,
see [5].

2 Preliminaries

The disk polynomials. Let α > 0 and (m,n) ∈ N2
0. The function

(2.1) R(α)
m,n(z) = R(α)

m,n(reiϕ) := ei(m−n)ϕr|m−n|P
(α,|m−n|)
m∧n (2r2 − 1),

where P
(α,β)
n (x) is the n-th Jacobi polynomial normalized by the requirement

P
(α,β)
n (1) = 1 for all n ∈ N and m∧n = min(m,n) is called the disk polynomial of
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degree (m,n) and exponent α. The disk polynomials form a family of orthogonal
polynomials in two variables on the unit disk D := {z ∈ C : |z| 6 1} = {r eiϕ :
0 6 r 6 1, 0 6 ϕ 6 2π} with respect to the measure

λα =
α + 1

π
(1− x2 − y2)αdxdy (z = x+ iy).

These polynomials have been studied by several authors, see [3],[4] and [9]. In
particular for α = d− 2 (d > 3 an integer) they appear in the expression for the
spherical functions of the Gelfand pair (U(d), U(d− 1)) (see e.g. [1], 3.1.14).

In [9] it is proven that all the linearization coe�cients de�ned by

R(α)
m1,n1

(z)R(α)
m2,n2

(z) =
∑
m,n

g(m1, n1,m2, n2,m, n)R(α)
m,n(z)

are nonnegative for α > 0.
If we de�ne a convolution of point measures on N2

0 by

δm1,n1 ∗ δm2,n2 =
∑
m,n

g(m1, n1,m2, n2,m, n)δm,n

N2
0 becomes a commutative hypergroup with the involution (m,n)− = (n,m) and

the neutral element (0, 0) and is called polynomial hypergroup in two variables
on N2

0, compare [1], 3.1.4. For the general theory of hypergroups we refer to the
monograph [1].

Our interest in this hypergroup structure stems from the fact that it allows a
generalized harmonic analysis. In particular there exists a Haar measure m ( i.e.
a positive measure m satisfying δk ∗m = m for every k ∈ N2

0), which is uniquely
determined by m({0}) = 1. In our case it is given by

hk,l := m({(k, l)}) =

(∫
D

|R(α)
k,l (z)|2λα(dz)

)−1
.

Furthermore for any probability measure µ on N2
0 we can de�ne a (generalized)

Fourier transform µ̂(z) as the continuous complex valued function

D → C, µ̂(z) =

∫
N2
0

R(α)
m,n(z)µ({(m,n)}).

An important property of this Fourier transform is the convolution theorem
µ̂ ∗ ν(z) = µ̂(z) · ν̂(z) if z ∈ D ([1], Theorem 2.2.2 (a)).
Random walks. Let α > 0 and µ ∈ M1(N2

0). Every Markov chain on N2
0 with

the transition kernel

P(i,j)(k,l) = P (Sn+1 = (k, l)|Sn = (i, j)) = δ(i,j) ∗ µ({(k, l)})
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is called random walk (with law µ) (note that this transition kernel is well de�ned
by the positivity condition on the linearization coe�cients). It is easy to see from
the de�nition that the n-step transition probabilities are given by

(2.2) P
(n)
(i,j)(k,l) := P (Sn = (k, l) | S0 = (i, j)) = δ(i,j) ∗ µ(n)({(k, l)})

where µ(n) denotes the n-fold convolution product with respect to ∗. A thorough
study of such Markov chains on an (arbitrary) hypergroup can be found in [1]
or [7].

Remark. Choosing in particular µ = 1/2(δ0,1 + δ1,0) we obtain the Markov chain
with transition kernel ([4], 2.16)

P(c,d)(k,l) =



α+c+1
2(α+c+d+1)

, if(k, l) = (c+ 1, d)
c

2(α+c+d+1)
, if(k, l) = (c− 1, d)

α+d+1
2(α+c+d+1)

, if(k, l) = (c, d+ 1)
d

2(α+c+d+1)
, if(k, l) = (c, d− 1)

0 otherwise.

3 Local limit theorems

We start with some auxiliary results needed later. Throughout this section we
assume that α > 0.

Lemma 3.1. Let Sn = (Xn, Yn) denote a random walk on N2
0 with law µ.

(i) We have the following integral representation of the transition kernel

(3.1) P
(n)
(c,d)(k,l) = hk,l

∫
D

µ̂n(z)Rα
c,d(z)Rα

k,l(z)dλα(z).

(ii) π(Sn) = Xn − Yn is an irreducible and aperiodic Markov chain on Z.

(iii) |µ̂(cos teiϕ)| = 1⇔ t = 0 = ϕ

Proof. (i) For (c, d) ∈ N2
0 �xed the Fourier transform ̂δ(c,d) ∗ µ(n)(z) is inte-

grable with respect to λα, which is the Plancherel measure on N̂2
0. The

inversion theorem [1], Theorem 2.2.36 yields the assertion.

(ii) Sn being irreducible, N2
0 is the smallest subhypergroup generated by Trµ

([7], Prop. 2.11).
π(x, y) := x−y is a homomorphism of the hypergroups N2

0 and Z the latter
endowed with its usual group structure ([4], Proposition 5.1) and π(Sn) is
a random walk on Z ([4], Theoreme 1). Thus Z is the smallest subgroup
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generated by Tr π(µ) and π(Sn) is irreducible.
Now assume that π(Sn) has period d > 1. Then π(µ(n))(0) = 0 for all
n with d 6 | n and

0 = π(µ(n)(0)) = µ(n)(π−1(0)) > µ(n)((0, 0)) > 0.

This implies P
(n)
(0,0)(0,0) = 0 for all n with d 6 | n contradicting the aperiodicity

of Sn.

(iii) We have

|R(α)
m,n(cos teiϕ)| = (cos t)|m−n||R(α,|m−n|)

m∧n (cos 2t)| < 1

for 0 < t 6 π/2 and thus |µ̂(cos teiϕ)| < 1 for t > 0.
Furthermore

|µ̂(eiϕ)| = |
∑

(m,n)∈N2
0

µ({(m,n)})ei(m−n)ϕ| = |F(π(µ))(ϕ)|,

where F is the usual Fourier transform on Z. It follows from part (ii) that
π(Sn) is strongly aperiodic in the terminology of [10] (see [10], D 2.2 and
D 5.1.). Thus |µ̂(eiϕ)| = 1⇔ ϕ = 0 ( [10], P 7.8).

Moreover we need the following identities (compare [6], 7.7.3 (24) and (25))∫ ∞
0

e−Ct
2

Λα(Nt)t2α+1dt =
Γ(α + 1)

2Cα+1
exp

(
−N

2

4C

)
(3.2)

and

∫ ∞
0

e−Ct
2

Λα(Mt)Λα(Nt)t2α+1dt =
22α−1Γ(α + 1)2

(NM)αC
exp

(
−N

2 +M2

4C

)
Iα

(
NM

2C

)
.

(3.3)

Theorem 3.2. Assume that the measure µ ∈M1(N2
0) satis�es the conditions

(i)
∑

m,n(m− n)µm,n = 0,

(ii)
∑

m,n(m− n)2µm,n =: a <∞,

(iii)
∑

m,n

(
2mn
α+1

+m+ n
)
µm,n =: b <∞,

(iv) the random walk with law µ is irreducible and aperiodic.
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Then we have for (k, l) ∈ N2
0 �xed

lim
n→∞

sup
c6
√
n

d6
√
n

∣∣∣nα+3/2P
(n)
(c,d)(k,l)−

22α+1Γ(α)Γ(α + 1)√
2aπb(βcdβkl)α

hk,ln
α×

exp

(
−(d− c+ k − l)2

2an
− β2

cd + β2
kl

2bn

)
Iα

(
βcdβkl
bn

) ∣∣∣ = 0

where βkl :=
√

(2k + α + 1)(2l + α + 1).
In particular we have for both (c, d)(k, l) and (k, l) �xed

lim
n→∞

nα+3/2P
(n)
(c,d)(k,l) =

2α+1/2Γ(α)√
πbα+1

hk,l.

Proof. The proof uses the Hilb formula for disk polynomials ([3], Theorem 1) and
the integral representation (3.1). In addition we set

µ̂(t, ϕ) := µ̂(cos teiϕ) Rc,d(t, ϕ) := R
(α)
c,d (cos teiϕ)

and

fn(t, ϕ) :=

µ̂(t/
√
n, ϕ/

√
n)nRc,d(t/

√
n, ϕ/

√
n)Rk,l(t/

√
n, ϕ/

√
n) cos(t/

√
n) sin2α+1(t/

√
n).

First we show that the asymptotics of P
(n)
(c,d)(k,l) depends only on the integrand in

a neighborhood of (1, 1). In a second step we determine the asymptotic behavior
in this neighborhood.
To achieve this we split the integral representation as follows (c, d, k, l ∈ N2

0)

nα+3/2P
(n)
(c,d)(k,l) =

nα+1/2hk,l(α + 1)

π

(∫ π
√
n

−π
√
n

∫ π
√
n/2

0

fn(t, ϕ)dtdϕ

)

=
nα+1/2hk,l(α + 1)

π

(∫ A

−A

∫ B

0

fn(t, ϕ)dtdϕ +

+

(∫ A

−A

∫ r
√
n

B

fn(t, ϕ)dtdϕ+

∫
[−s
√
n,−A]∪[A,s

√
n]

∫ r
√
n

0

fn(t, ϕ)dtdϕ

)

+

(∫ s
√
n

−s
√
n

∫ π
√
n/2

r
√
n

fn(t, ϕ)dtdϕ+

∫
[−π
√
n,−s

√
n]∪[s

√
n,π
√
n]

∫ π/2

0

fn(t, ϕ)dtdϕ

))

=
nα+1/2hk,l(α + 1)

π
(I1(n) + I2(n) + I3(n)) .

Choosing the constants A,B, r, s appropriately we can show that nα+1/2I2(n) and
nα+1/2I3(n) tend to 0 uniformly in (c, d) as n→∞.
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A Taylor expansion of µ̂(t, ϕ) around (0, 0) shows that there exist 0 < r < π/2
and 0 < s < π with µ̂(t, ϕ) 6 1− 1

4
(aϕ2 + bt2) for 0 6 t 6 r and 0 6 ϕ 6 s.

Furthermore for any ε > 0 there exist A > 0 and B > 0 such that∫ ∞
B

e−bt
2/4t2α+1dt < ε and

∫
[−A,A]c

e−aϕ
2/2dϕ < ε.

with this choice of A,B, r, s we have

µ̂(t/
√
n, ϕ/

√
n)n 6

(
1− 1

4n
(bt2 + aϕ2)

)n
6 e−bt

2/4e−aϕ
2/4.

on the set [B, r
√
n] × [−A,A] ∪ [0, r

√
n] × {[−s

√
n,−A] ∪ [A, s

√
n]} and conse-

quently

|nα+1/2I2(n)| 6 nα+1/2
( ∫ A

−A
e−aϕ

2/4dϕ

∫ ∞
B

e−bt
2/4(t/

√
n)2α+1dt+∫

[−A,A]c
e−aϕ

2/4dϕ

∫ ∞
0

e−bt
2/4(t/

√
n)2α+1dt

)
6 Cε

uniformly in (c, d).
Using Lemma 3.1 we can �nd δ > 0 with |µ̂(t, ϕ)| 6 1 − δ. if r < t 6 π/2 or
s < |ϕ| 6 π. This yields

|nα+1/2I3(n)| 6 nα+3/2
( ∫ s

−s

∫ π/2

r

|µ̂(t, ϕ)|n sin2α+1 tdtdϕ+∫
s6|ϕ|6π

∫ π/2

0

|µ̂(t, ϕ)|n sin2α+1 tdtdϕ
)

6 C(1− δ)nnα+3/2.

Thus we obtain |I3(n)| → 0 uniformly in (c, d) as n→∞.
To �nish the proof we show that I1(n) has the correct asymptotic behavior. In
order to do this we write I1(n) as

nα+1/2

∫ A

−A

∫ B

0

fn(t, ϕ)dtdϕ =∫ ∞
−∞

e−aϕ
2/2eiϕ/

√
n(d−c+k−l)dϕ

∫ ∞
0

e−bt
2/2Λα(βc,dt/

√
n)Λα(βk,lt/

√
n)t2α+1dt

+J1(n) + J2(n) + J3(n) + J4(n)

=
22α+1/2Γ(α)Γ(α + 1)√

aπb(βcdβkl)α
nαe−(d−c+k−l)

2/(2αn)e−
β2cd+β

2
kl

2nb Iα

(
βcdβkl
2bn

)
+J1(n) + J2(n) + J3(n) + J4(n),
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where

J1(n) =∫ A

−A

∫ B

0

[
µ̂(t/
√
n, ϕ/

√
n)n − e−a/2ϕ2

eb/2t
2
]
eiϕ/

√
n(d−c+k−l) ×

Λα(βc,dt/
√
n)Λα(βk,lt/

√
n)t2α+1dtdϕ

J2(n) =∫ A

−A

∫ B

0

µ̂(t/
√
n, ϕ/

√
n)neiϕ/

√
n(d−c+k−l) ×[(

sin t/
√
n

t/
√
n

)2α+1

Rc,d(t/
√
n, 0)Rk,l(t/

√
n, 0) cos t/

√
n− Λα(βc,dt/

√
n)Λα(βk,lt/

√
n)

]
dtdϕ

J3(n) =∫
[−A,A]c

∫ B

0

eiϕ/
√
n(d−c+k−l)−aϕ2/2−bt2/2Λα(βc,dt/

√
n)Λα(βk,lt/

√
n)t2α+1dtdϕ

J4(n) =∫ ∞
−∞

∫ ∞
B

eiϕ/
√
n(d−c+k−l)−aϕ2/2−bt2/2Λα(βc,dt/

√
n)Λα(βk,lt/

√
n)t2α+1dtdϕ.

Here we have used equation (3.3) and the identity

Rc,d(t, ϕ) = ei(c−d)ϕRc,d(t, 0)

(see 2.1).
It remains to be shown that Ji(n)→ 0 as n→∞ (i = 1, 2, 3, 4).
This is immediate for J3(n) and J4(n).
Since µ̂(t/

√
n, ϕ/

√
n)n → e−aϕ

2/2e−bt
2/2 uniformly on compact sets, J1(n)→ 0 as

n→∞. Regarding J2(n) set

fn(t) :=(
sin t/

√
n

t/
√
n

)2α+1

Rc,d(t/
√
n, 0)Rk,l(t/

√
n, 0) cos t/

√
n− Λα(βc,dt/

√
n)Λα(βk,lt/

√
n).

Now we use the Hilb formula for the disk polynomials ([3], Theorem 1) to show
that

lim
n→∞

sup
c6
√
n

d6
√
n

|fn(t)| = 0

uniformly on compact sets.
This is obvious if c = d = k = l = 0.
The Hilb formula yields constants C1�C4 such that

|fn(t)| 6 C1t
2/n+C2((c−d)2+(k−l)2)t4/n2+C3t

4/n2+C4((c−d)2+(k−l)2)t8/n4,

7



if cdkl > 0. In the remaining cases we obtain analogous inequalities and the proof
is complete.

The above mentioned random walk with law µ = 1/2(δ(1,0) + δ(0,1) has period
2. Thus theorem 3.2 is not directly applicable. Nevertheless we have

Corollary 3.3. Let Sn be the random walk with law µ = 1/2(δ(1,0) + δ(0,1) and
assume that c− k and d− l are both even or odd. Then

lim
n→∞

∣∣∣(2n)α+3/2P
(2n)
(c,d)(k,l)−

22α+2Γ(α + 2)Γ(α + 1)√
2π(βcdβkl)α

hk,ln
α×

exp

(
−(d− c+ k − l)2

n
− β2

cd + β2
kl

2n

)
Iα

(
βcdβkl
n

) ∣∣∣ = 0

where βcd =
√

(2c+ α + 1)(2d+ α + 1).

Proof. Write

(2n)α+3/2P
(2n)
(c,d)(k,l) = 4(α + 1)hk,l

(√
2n4π∫ π

−π
(cosx)2nei(d−c+k−l)xdx

)
(

(2n)2α+1

∫ π/2

0

(cos y)2n+1(sin y)2α+1R
(α)
c,d (cos y)R

(α)
k,l (cos y)dy

)
= 4(α + 1)hk,lI1(n)I2(n).

Furthermore

I1(n) =

√
2n

2
P (

n∑
k=1

Xk = d− c+ k − l),

where Xk are independent identically distributed random variables taking values
in Z and common law µ = 1/4δ−2 + 1/2δ0 + 1/4δ2. The classical local limit
theorem ([8], Theorem 4.2.1) implies

lim
n→∞

∣∣∣I1(n)− 1√
2π

exp(−(d− c+ k − l)2/n)
∣∣∣ = 0

uniformly in c, d, k, l.
As in the proof above we may show that

lim
n→∞

∣∣∣I2(n)− 22αΓ(α + 1)2

(βcdβkl)α
nα exp

(
−β

2
cd + β2

kl

2n

)
Iα

(
βcdβkl
n

) ∣∣∣ = 0.

The following corollary justi�es the term local limit theorem, since Φa,b(x, y)
is the density of the limit law in the central limit theorem.

8



Corollary 3.4. Under the assumptions of theorem 3.2 let kn, ln be sequences of
natural numbers satisfying kn →∞, ln →∞ and kn, ln = O(

√
n). Then

P
(n)
(0,0)(kn,ln)

≈ 1

n
Φa,b

(
kn√
n
,
ln√
n

)
where

Φa,b(x, y) =
2α+1

√
2πabα+1Γ(α + 1)

(xy)α(x+ y)e−2xy/be−
(x−y)2

2a .

Proof. We have with the same abbreviations as above

nP
(n)
(0,0)(kn,ln)

Φa,b(
kn√
n
, kn√

n
)

=

√
2abα+1Γ(α + 2)hkn,ln√
π2α+1(kn, ln)α(kn + ln)

nα+1/2e
2knln
2bn e

(kn−ln)2

2an ×∫ π
√
n

−π
√
n

∫ π
√
n/2

0

µ̂(t/
√
n, ϕ/

√
n)nRkn,ln(t/

√
n, ϕ/

√
n) cos t/

√
n sin2α+1 t/

√
ndtdϕ.

As

hkn,ln =
(kn + ln + α + 1)Γ(kn + α + 1)Γ(ln + α + 1)

kn!ln!Γ(α + 1)Γ(α + 2)

([4],(2.3)) the asymptotic of the Gamma function yields

lim
n→∞

√
2abα+1Γ(α + 2)hkn,ln√
π2α+1(kn, ln)α(kn + ln)

nα+1/2 =

√
2abα+1

√
π2α+1Γ(α + 1)

.

Thus all we have to show is

lim
n→∞

√
2abα+1

√
π2α+1Γ(α + 1)

e
2knln
2bn e

(kn−ln)2

2an

∫ π
√
n

−π
√
n

∫ π
√
n/2

0

µ̂(t/
√
n, ϕ/

√
n)n ×

Rkn,ln(t/
√
n, ϕ/

√
n) cos t/

√
n sin2α+1 t/

√
ndtdϕ = 1.

But this can be seen as in the proof of theorem 3.2 using equation (3.2) and
kn, ln = O(

√
n).
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